

Bronze Age Usage and Development Of Defensive Armour in Hungary

Marianne Mödlinger¹, Zsolt Kasztovszky², András Kocsonya⁴, Imre Kovács⁴, Paolo Piccardo³, Zsombor Sánta⁵, Veronika Szilágyi², Zoltán Szőkefalvi-Nagy⁴ 1 Landesmuseum Kärnten, Klagenfurt, Austria 2 Institute of Isotopes, Hungarian Academy of Sciences, Hungary 3 Dipartimento di Chimica e Chimica Industriale, Universitá di Genova, Italia 4 KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Hungary 5 Research Institute For Solid State Physics And Optics, Hungarian Academy of Sciences, Hungary

Archaeology

Fixlab

Budapest Neutron Centre

- Hungarian Armour was not allowed to be sampled nor taken out of the country
- Invasive sampling was prohibited
- non-invasive analyses in Hungary → PGAA, PIXE, ToF-ND

Defensive armour from the following

- Hungarian National Museum Budapest (5 helmets, 1 cuirass)
- Museum of Szekszárd (1 helmet)
- Museum of Kaposvár (1 helmet, 1 greave)
- Museum of Paks (1 helmet)
- Museum of Keszthely (2 (3?) Greaves)

Main Project

- Title: Bronze Age Warfare in Eastern Europe: Development, Technology and Usage of Defensive Armour
- 3-year project financed by the Austrian Science Fund (FWF) and FP7-Marie Curie (EU), 1.7.2011 - 31.6.2014
- Studying, documenting and sampling of approx. 120 pieces of armour in: Austria, Bosnia, Croatia, Czech Republic, Hungary, Serbia, Slovakia, Slovenia, Romania, ...
- Place of research: Dipartimento di Chimica e Chimica Industriale. Universitá di Genova
- Archaeological documentation & analyses with SEM, XRF, Metallography, Raman, ToF-ND, PGAA, PIXE.

PGAA

- non-invasive!
- bulk composition
- main- and trace elements
- cold neutrons
- Higher flux
- higher reaction rate, shorter measurement time

Prompt Gamma Activation Analysis facility operates at one of the horizontal cold neutron beam of the 10 MW Budapest Research Reactor. The thermal equivalent intensity of the neutron beam is 10⁸ cm⁻²s⁻¹ at the sample position. PGAA is a non-destructive nuclear method capable to quantify elemental composition of bulk solid, liquid or gaseous samples. In principle, it can detect all the chemical elements (except He), but with very different sensitivities.

One of the most remarkable advantages of PGAA, is that the irradiation of a sample is performed by external guided neutrons, without limitations of the object's dimensions. Sampling from the object is not necessary, and the induced radioactivity due to irradiation is negligible.

The method is most applicable to measure all the major geochemical components and some trace elements in rocks, alloying components of bronzes, etc. It is unique in measuring some light elements, especially H

	Object	Findspot	Measured part	Н	S	CI	Fe	Co	Ni	Cu	As	Ag	Sn	Pb	Sn% rel. unc.	Sn% abs. unc.
	greave (complete)	Várvölgy	sheat	0.06				0.04		83.60		0.12	8.89	7.28		
PIXE	ATC MR HE		sheat				0.51	0.01	0.00	83.60	1.35	0.62	16.46	1.51	4.23	0.70
			ring				0.10	0.00	0.02	71.35	0.32	0.19	28.81	0.65	5.90	1.70
			wire				0.06	0.01	0.07	99.71	0.00	0.00	0.52	0.03	85.98	0.45
PGAA	greave (complete)	Lengyeltóti	sheat	0.03				0.17	0.18	93.24	0.23	0.06	6.06			
PIXE			sheat				0.46	0.09	0.18	99.12	0.50	0.00	0.94	0.22	17.63	0.17
			rivet				0.38	0.00	0.09	99.39	0.15	0.05	0.68	0.26	18.38	0.13
			wire				0.36	0.04	0.16	99.43	0.46	0.04	0.62	0.24	23.59	0.15
PGAA	cap helmet with stars	Northern H.?	сар		0.40	0.02	0.28			90.76		0.00	6.32	2.17		
PIXE			сар				3.77		0.77	94.28	5.73	0.34	5.80	2.67	6.59	0.38
			сар				1.16		0.37	98.76	1.20	0.07	1.31	0.54	13.10	0.17
			rivet				0.84		0.42	93.35	3.25	0.12	6.75	1.62	12.01	0.81
PGAA	conical bell helmet	Dunaföldvár	сар	0.05				0.02		83.97		0.02	12.43	3.50		
PIXE			сар				1.02		0.07	91.78	0.13	0.03	8.31	0.26	8.50	0.71
		polished	сар				0.46		0.03	93.52	0.09	0.03	6.54	0.30	4.08	0.27
			сар				0.49		0.04	94.13	0.11	0.01	5.93	0.26	15.44	0.92
	cap helmet with stars	Paks	сар	0.03	0.22	0.01		0.01	0.35	89.56	0.11		9.71			
PIXE			сар				0.37	0.03	0.28	96.07	0.35		4.00	0.59	5.20	0.21
			knob	0.01	0.25	0.02		0.02		88.91		0.08	10.72			
			knob				0.49		0.23	93.84	0.32	0.00	6.24	0.31	4.20	0.26
PGAA	fragment; helmet	Jászkarajenő	сар	0.26	0.34	0.09		0.04	0.05	87.78		0.09	9.09	1.96		
PIXE			сар				0.92		0.07	96.20	0.75		3.86	0.11	7.24	0.28
			сар				0.81		0.13	96.67	0.76		3.79	0.00	10.86	0.41
			rivet				3.35		0.11	100.00	0.48		0.00	0.00		
	conical bell helmet	Keresztéte	сар	0.34	0.40	0.05				82.12		0.05	13.69	3.73		
PIXE							0.35	0.00	0.90	66.79	0.62	0.29	33.23	5.89	3.45	1.15
							0.25	0.01	0.56	88.19	0.40	0.05	11.84	1.77	4.98	0.59
PGAA	cuirass	Szentgáloskér	sheat	0.06	0.89	0.01		0.23	0.12	91.81	0.05		6.81			
PGAA	bell helmet	Nagytétény	сар	0.02	0.25	0.01		0.04		92.32	0.20	0.05	7.11			
PIXE			сар				0.42		0.14	99.40	0.33	0.03	0.68	0.80	20.51	0.14
PGAA	bell helmet	Nagytétény	knob	0.00				0.03		92.07		0.06	7.83			
PIXE			knob				0.40		0.19	99.06	0.33	0.08	1.02	1.36	15.63	0.16

o detected; tin-bronzes with 6-13.7% Sn and up to 7.3% Pb

Different alloys for different types of helmets/objects?

o trace elements (most important: Ni, As, Ag, Sb) are low

comparison needed (just 3 (4) greaves and one cuirass so far!).

• Change in the production technique or in the alloys used during time? Yes! In Ha A2/B1 there seems to be a change; younger helmets contain clearly

less tin, and not more lead. This is opposite to French helmets of the Atlantic

o Yes! Different alloys for different types of helmets; but this might be more due to

O No! No different alloys for different weapon categories so far; more data for

SENSITIVITY FOR BUDAPEST SYSTEM

soil contamination?), elipses for components of bronzes.

Round circles for the elements typical in rocks (might be present as

H - 100794 (13381) (13881) (13381) (13381) (13381) (13381) (13381) (13381) (13381) (13	Be 9 00000 00000 7 00000 7 00000			stable i	nent isotope weight apture attering		■ 100 ■ >10	-1 0 100)-1000	t [ppm]		(B softer Mass Notes	C 125 111 0 100000 to 5 5 5 1 0	N 14 15" 14,00674 1,916 11,61 b	0 96 (p ^{0,10} tg) ¹² 15.9964 0.00019 ts 4.200 ts	F 10 18.598 6.009.15 4.014.15	He 31,000 4 4,000 62 6,007 b 1,340 Ne 30" 21 00 22 20,1297 6,000 b 2,628 b
Na 23 23 86077 6.500 h	Mg 24 25 28 24.305 0.053 b	Sc	TI	V	Cr	Mn	Fe	Co	N	Cu	Zn (Al 27 200011 0.20110	Si 20 20 20 0.171 Ge	90,972 b	S 32° 33 34' 36 32,066 0,53 0 1,000 0	CI 361 3011 33.5 5 Br	Ar 10 30 40 ^{ma} 1675 b 1.683 b Kr
90 0043 21 to 190 to	10° 42 43 44° 41 48 41:078 27:50	41 44,0500 27,5 b	40' 00' 47' 80' 47' 80' 5.00 b	50 Sa 15 50 Sa 15 50 Sa 15 50 Sa 15	100 21 000 31 000	55 543000 53316 5300	95.845 2.56.5 41.623	58.0002 37.16 b	180° 61° 61 90° 64° 61° 90° 64° 90° 64° 10°50	69" 10" 65.546 2.765 8.035	61 " 66" 67" 66" 13 65.23 2.75 b 6.26 b	69 ⁷⁰ 71 ⁴⁰ 69 729 2.75 b 6.53 b	70° 77° 73° 24° 70° 2261 2.20 to 8.60 to	74 100 11	74 767 777 7677 867 629 76:96 11.71s 6:30%	79" Hr" 79.504 4.9.5 5.50.5	78.80 82 80 84° 80 83.8 25 b 7.68 b
85° 57" 85 4678 5 33 b 6 8 b	Sr 64.85" 87" 88" 87.02 1.28.6 6.25.6	88.00005 1.05 o 7.70 o	Zr 96** 50** 50** 94** 06** 91,254 0,105.6 6,46.6	Nb 50 50 50438 1.10 b 6.251 b	Mo 8071 947 951 8071 9877 9877 65 94 2-88-5 8-71 15	(Tc)	Ru set set sort sac sont segt son son sort a 56 to 6.6 to	Ph 102 102 5065 144 8 b 4.6 b	Pd 102' 104' 305" 100' 100' 100.42 8.0 b 4.48 b	Ag us/* tus* us/ aeeo us/a a e who	Cd *** (80 940 107 87 107 980 940 812.411 pizzi 6 8.54s	113" 115" 114.418 110.510 2.62 b	Sn 127 HA UG F29 1477 HEP 137 1387 1377 1377 1168,72 0.46281 D 4.8002 D	Sb 121" 122" 121 78 4 91 6 3 80 9	Te concorror-or 127.0 4.7 ts 4.32 ts	127 128 00447 8.15 b 3.81 b	Xe 104 CR CON CO 104 CR 104 CR
CS 133 132 90140 2915	Ba 100 100 100 100 100 100 100 100 100 100	La 136 139 to 136 9065 8,07 to 9,66 to	Hf 176.136*172** 129** 129** 180** 176.40 100.10 10.20	Ta 160 9497 30.6 b 601 b	W 180 182" 183" 184" 18384 18384 1838 4,00%	Re 1807 1807 180,207 80,7 to 11.5 to	Os tox the ver- tox tox tox tox tox tox tox tox tox tox tox	Ir 10111 10011 100217 403 ti 14 ti	Pt 100 rgp* rse** 100** 100 total 10.0 total 10.7 to	Au 197 198 (1985) 19 (1985) 7 (1985)	Hg 106 100 100 209 204 209 200.00 272,345 26.8 5	TI 2017 2067 204,3033 2,435 9,805	Pb 284' 208" 207" 200" 0.171 b 11.12 b	209 209 206-96038 0-0308 ti 0-150'8	(Po)	(At)	(Rn)
(Fr)	(Ra) (ISM) 12.0 b 13 b	(Ac)	104	105	106												
		Ce	Pr	1 Nd	(Pm)/	Sm	-	Cd	A Tb	Dv	Но	Er	Tm	Yb	Lu		
		136 136 140 ¹⁰ 142 ¹ 140,115 0,63 th 2,046	141 141 00705 11.5 p 2.00 h	SET HET THE THE THE THE THE THE THE THE T	0.45	1000	EU 1317 159 131 163 933 16	Gd	150 150 150,92504 22,4 b 8,84 b	102 103 107 108 102 107 108 162.5 994.0 93.00	165 165 164.00000 84.70 8.40.0	162 164" 166" 167" 168" 170" 168" 170" 167.26 109% 8.7%	180,00401 180,00401 1900 1838 b	173.04 94.86 23.46	178° 176° 174,978 746 729		
		Th	(Pa)	DA1 204	(Np)	(Pu)	(Am)	(Cm)	(Bk)	(Cf)	(Es)	(Fm)	(Md)	(No)	(Lr)		
		732.63105 7.37 6 73.36 b	200.6 to 10.6 to	258.0368 2.57 h 0.0 h	175.90 1450	1017.3 b 7.7 b											

ToF-ND

- non-invasive!
- phase analysis of composition
- texture analysis
- Elemental composition
- max. Illuminated surface: 25x100 mm². min. sample volume: a few cm²
- back scattering mode, ToF-ND resolution:
- $\Delta d/d \sim 1 \times 10^{-3}$ at $\lambda = 0.1$ nm (200 Hz) In the case of inhomogeneous samples, the measured information is the average for the whole illuminated

ToF-ND results

Results

Alloy composition?

Bronze Age.

the dating of the helmets

Elemental composition

The gained information in case of elemental composition is taken rom all illuminated volume. In this way we can provide average nformation about the elemental composition of the sample. A good correlation was observed with PGAA data in case of two major components (Cu, Sn). In the case of three major components (Cu, Sn, Pb) the Vegard's law is not applicable.

n all measures samples the CuSn α-phase was observed due to small Sn concentration (below 13,7w%). If the sample have lead content we suppose that a part of the tin makes a different phase with lead which is not observable in our spectra due to the small quantity of PbSn phase.

Texture

Texture analysis of three different type of objects were done. The Paks cap (knob part) and Várvölgy bronze greave shown weak texture. More remarkable texture was observed in case of Kér-Szentgáloskér bronze cuirass. Interpretation of preferred orientation of crystallites) have to be supported by conventional metallography

Diffraction spectra for one rotation setting measured on Kér-Szentgáloskér sample

Diffraction pattern of measured sample

Conical bell helmets

Cap helmets

Cuirass fragments

Applique

Bronze Age metal defensive armour Greave (leg protection) Curiass Helmet Shield

Dating relative: Bz D Ha B3 Dating absolute: (approx. 1300 800/750 BC)

Späte Bronzezeit							
Ha B2/3	800–950 v. Chr.						
Ha B1	950-1050 v. Chr.						
Ha A2	1050-1100 v. Chr.						
Ha A1	1100-1200 v. Chr.						
Bz D	1200-1300 v. Chr.						
Mittlere Bronzezeit							
Bz C2	1300-1400 v. Chr.						
Bz C1	1400-1500 v. Chr.						
Bz B	1500-1600 v. Chr.						
Frühe Bronzezeit							
Bz A2	1600-2000 v. Chr.						
Bz A1	2000-2200 v. Chr.						

PIXE

- Non-invasive! Analyses on corroded surfaces; or on the surface the corrosion is removed (invasive!). Elemental sensitivities: 5-100ppm range, depending on the
- element Depth of analysis for 2.5 MeV proton in bronze (micrometer):

Fe	8.6	As	7.5
Co	9.9	Ag	12.7
Ni	10.6	Sn	12.9
Cu	11.3	Pb	7.6
Zn	11.9		

- On several elements such as Ni, Au, Pb and Bi XRS-PIXE methods have a better sensitivity than PGAA.
- The analysis of Sn and Sb is more difficult, since the sensitivities of both PIXE and PGAA methods are poor, however the sensitivity of PIXE can be considerably improved by optimization of the experimental procedure.
- 90% of the X-ray counts are coming from the layer of thickness listed above.

Typical PIXE-spectrum setup

- Results and challenges Corrosion on the surface: Unfortunately no analyses on the pure metal permitted; the penetration depth of 2.5 MeV protons is not large enough; no possibility to check the thickness of the corrosion layer non-invasive
- On the surface with PIXE less Sn was detected than with the PGAA in the bulk; further studies are planned to find the reasons
- The quantitative results were giving a good idea of the alloy composition, and in addition the minor and trace elements can also be analysed