Bronze Age Usage and Development Of Defensive Armour in Hungary Marianne Mödlinger¹, Zsolt Kasztovszky², András Kocsonya⁴, Imre Kovács⁴, Paolo Piccardo³, Zsombor Sánta⁵, Veronika Szilágyi², Zoltán Szőkefalvi-Nagy⁴ 1 Landesmuseum Kärnten, Klagenfurt, Austria 2 Institute of Isotopes, Hungarian Academy of Sciences, Hungary 3 Dipartimento di Chimica e Chimica Industriale, Universitá di Genova, Italia 4 KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Hungary 5 Research Institute For Solid State Physics And Optics, Hungarian Academy of Sciences, Hungary ## **Archaeology** ### Fixlab ### **Budapest Neutron Centre** - Hungarian Armour was not allowed to be sampled nor taken out of the country - Invasive sampling was prohibited - non-invasive analyses in Hungary → PGAA, PIXE, ToF-ND ## Defensive armour from the following - Hungarian National Museum Budapest (5 helmets, 1 cuirass) - Museum of Szekszárd (1 helmet) - Museum of Kaposvár (1 helmet, 1 greave) - Museum of Paks (1 helmet) - Museum of Keszthely (2 (3?) Greaves) ### **Main Project** - Title: Bronze Age Warfare in Eastern Europe: Development, Technology and Usage of Defensive Armour - 3-year project financed by the Austrian Science Fund (FWF) and FP7-Marie Curie (EU), 1.7.2011 - 31.6.2014 - Studying, documenting and sampling of approx. 120 pieces of armour in: Austria, Bosnia, Croatia, Czech Republic, Hungary, Serbia, Slovakia, Slovenia, Romania, ... - Place of research: Dipartimento di Chimica e Chimica Industriale. Universitá di Genova - Archaeological documentation & analyses with SEM, XRF, Metallography, Raman, ToF-ND, PGAA, PIXE. ## **PGAA** - non-invasive! - bulk composition - main- and trace elements - cold neutrons - Higher flux - higher reaction rate, shorter measurement time Prompt Gamma Activation Analysis facility operates at one of the horizontal cold neutron beam of the 10 MW Budapest Research Reactor. The thermal equivalent intensity of the neutron beam is 10⁸ cm⁻²s⁻¹ at the sample position. PGAA is a non-destructive nuclear method capable to quantify elemental composition of bulk solid, liquid or gaseous samples. In principle, it can detect all the chemical elements (except He), but with very different sensitivities. One of the most remarkable advantages of PGAA, is that the irradiation of a sample is performed by external guided neutrons, without limitations of the object's dimensions. Sampling from the object is not necessary, and the induced radioactivity due to irradiation is negligible. The method is most applicable to measure all the major geochemical components and some trace elements in rocks, alloying components of bronzes, etc. It is unique in measuring some light elements, especially H | | Object | Findspot | Measured part | Н | S | CI | Fe | Co | Ni | Cu | As | Ag | Sn | Pb | Sn% rel. unc. | Sn%
abs. unc. | |------|-----------------------|---------------|---------------|------|------|------|------|------|------|--------|------|------|-------|------|---------------|------------------| | | greave (complete) | Várvölgy | sheat | 0.06 | | | | 0.04 | | 83.60 | | 0.12 | 8.89 | 7.28 | | | | PIXE | ATC MR HE | | sheat | | | | 0.51 | 0.01 | 0.00 | 83.60 | 1.35 | 0.62 | 16.46 | 1.51 | 4.23 | 0.70 | | | | | ring | | | | 0.10 | 0.00 | 0.02 | 71.35 | 0.32 | 0.19 | 28.81 | 0.65 | 5.90 | 1.70 | | | | | wire | | | | 0.06 | 0.01 | 0.07 | 99.71 | 0.00 | 0.00 | 0.52 | 0.03 | 85.98 | 0.45 | | PGAA | greave (complete) | Lengyeltóti | sheat | 0.03 | | | | 0.17 | 0.18 | 93.24 | 0.23 | 0.06 | 6.06 | | | | | PIXE | | | sheat | | | | 0.46 | 0.09 | 0.18 | 99.12 | 0.50 | 0.00 | 0.94 | 0.22 | 17.63 | 0.17 | | | | | rivet | | | | 0.38 | 0.00 | 0.09 | 99.39 | 0.15 | 0.05 | 0.68 | 0.26 | 18.38 | 0.13 | | | | | wire | | | | 0.36 | 0.04 | 0.16 | 99.43 | 0.46 | 0.04 | 0.62 | 0.24 | 23.59 | 0.15 | | PGAA | cap helmet with stars | Northern H.? | сар | | 0.40 | 0.02 | 0.28 | | | 90.76 | | 0.00 | 6.32 | 2.17 | | | | PIXE | | | сар | | | | 3.77 | | 0.77 | 94.28 | 5.73 | 0.34 | 5.80 | 2.67 | 6.59 | 0.38 | | | | | сар | | | | 1.16 | | 0.37 | 98.76 | 1.20 | 0.07 | 1.31 | 0.54 | 13.10 | 0.17 | | | | | rivet | | | | 0.84 | | 0.42 | 93.35 | 3.25 | 0.12 | 6.75 | 1.62 | 12.01 | 0.81 | | PGAA | conical bell helmet | Dunaföldvár | сар | 0.05 | | | | 0.02 | | 83.97 | | 0.02 | 12.43 | 3.50 | | | | PIXE | | | сар | | | | 1.02 | | 0.07 | 91.78 | 0.13 | 0.03 | 8.31 | 0.26 | 8.50 | 0.71 | | | | polished | сар | | | | 0.46 | | 0.03 | 93.52 | 0.09 | 0.03 | 6.54 | 0.30 | 4.08 | 0.27 | | | | | сар | | | | 0.49 | | 0.04 | 94.13 | 0.11 | 0.01 | 5.93 | 0.26 | 15.44 | 0.92 | | | cap helmet with stars | Paks | сар | 0.03 | 0.22 | 0.01 | | 0.01 | 0.35 | 89.56 | 0.11 | | 9.71 | | | | | PIXE | | | сар | | | | 0.37 | 0.03 | 0.28 | 96.07 | 0.35 | | 4.00 | 0.59 | 5.20 | 0.21 | | | | | knob | 0.01 | 0.25 | 0.02 | | 0.02 | | 88.91 | | 0.08 | 10.72 | | | | | | | | knob | | | | 0.49 | | 0.23 | 93.84 | 0.32 | 0.00 | 6.24 | 0.31 | 4.20 | 0.26 | | PGAA | fragment; helmet | Jászkarajenő | сар | 0.26 | 0.34 | 0.09 | | 0.04 | 0.05 | 87.78 | | 0.09 | 9.09 | 1.96 | | | | PIXE | | | сар | | | | 0.92 | | 0.07 | 96.20 | 0.75 | | 3.86 | 0.11 | 7.24 | 0.28 | | | | | сар | | | | 0.81 | | 0.13 | 96.67 | 0.76 | | 3.79 | 0.00 | 10.86 | 0.41 | | | | | rivet | | | | 3.35 | | 0.11 | 100.00 | 0.48 | | 0.00 | 0.00 | | | | | conical bell helmet | Keresztéte | сар | 0.34 | 0.40 | 0.05 | | | | 82.12 | | 0.05 | 13.69 | 3.73 | | | | PIXE | | | | | | | 0.35 | 0.00 | 0.90 | 66.79 | 0.62 | 0.29 | 33.23 | 5.89 | 3.45 | 1.15 | | | | | | | | | 0.25 | 0.01 | 0.56 | 88.19 | 0.40 | 0.05 | 11.84 | 1.77 | 4.98 | 0.59 | | PGAA | cuirass | Szentgáloskér | sheat | 0.06 | 0.89 | 0.01 | | 0.23 | 0.12 | 91.81 | 0.05 | | 6.81 | | | | | PGAA | bell helmet | Nagytétény | сар | 0.02 | 0.25 | 0.01 | | 0.04 | | 92.32 | 0.20 | 0.05 | 7.11 | | | | | PIXE | | | сар | | | | 0.42 | | 0.14 | 99.40 | 0.33 | 0.03 | 0.68 | 0.80 | 20.51 | 0.14 | | PGAA | bell helmet | Nagytétény | knob | 0.00 | | | | 0.03 | | 92.07 | | 0.06 | 7.83 | | | | | PIXE | | | knob | | | | 0.40 | | 0.19 | 99.06 | 0.33 | 0.08 | 1.02 | 1.36 | 15.63 | 0.16 | o detected; tin-bronzes with 6-13.7% Sn and up to 7.3% Pb Different alloys for different types of helmets/objects? o trace elements (most important: Ni, As, Ag, Sb) are low comparison needed (just 3 (4) greaves and one cuirass so far!). • Change in the production technique or in the alloys used during time? Yes! In Ha A2/B1 there seems to be a change; younger helmets contain clearly less tin, and not more lead. This is opposite to French helmets of the Atlantic o Yes! Different alloys for different types of helmets; but this might be more due to O No! No different alloys for different weapon categories so far; more data for # SENSITIVITY FOR BUDAPEST SYSTEM soil contamination?), elipses for components of bronzes. Round circles for the elements typical in rocks (might be present as | H - 100794 (13381) (13881) (13381) (13381) (13381) (13381) (13381) (13381) (13381) (13 | Be 9 00000 00000 7 00000 7 00000 | | | stable i | nent
isotope
weight
apture
attering | | ■ 100
■ >10 | -1
0
100
)-1000 | t [ppm] | | (| B
softer
Mass
Notes | C 125 111 0 100000 to 5 5 5 1 0 | N
14 15"
14,00674
1,916
11,61 b | 0
96 (p ^{0,10} tg) ¹²
15.9964
0.00019 ts
4.200 ts | F
10
18.598
6.009.15
4.014.15 | He 31,000 4
4,000 62
6,007 b
1,340
Ne
30" 21 00 22
20,1297
6,000 b
2,628 b | |--|--|--|--|--|--|--|--|--|---|---|--|---|---|---|---|---|---| | Na
23
23 86077
6.500 h | Mg
24 25 28
24.305
0.053 b | Sc | TI | V | Cr | Mn | Fe | Co | N | Cu | Zn (| Al
27
200011
0.20110 | Si
20 20 20
0.171
Ge | 90,972 b | S
32° 33 34' 36
32,066
0,53 0
1,000 0 | CI
361 3011
33.5 5
Br | Ar
10 30 40 ^{ma}
1675 b
1.683 b
Kr | | 90 0043
21 to
190 to | 10° 42 43 44°
41 48
41:078
27:50 | 41
44,0500
27,5 b | 40' 00'
47' 80'
47' 80'
5.00 b | 50 Sa 15
50 Sa 15
50 Sa 15
50 Sa 15 | 100
21 000
31 000 | 55
543000
53316
5300 | 95.845
2.56.5
41.623 | 58.0002
37.16 b | 180° 61° 61
90° 64° 61°
90° 64°
90° 64°
10°50 | 69" 10"
65.546
2.765
8.035 | 61 " 66" 67"
66" 13
65.23
2.75 b
6.26 b | 69 ⁷⁰ 71 ⁴⁰
69 729
2.75 b
6.53 b | 70° 77° 73°
24° 70°
2261
2.20 to
8.60 to | 74 100 11 | 74 767 777 7677
867 629
76:96
11.71s
6:30% | 79" Hr" 79.504 4.9.5 5.50.5 | 78.80 82 80
84° 80
83.8
25 b
7.68 b | | 85° 57"
85 4678
5 33 b
6 8 b | Sr
64.85" 87"
88"
87.02
1.28.6
6.25.6 | 88.00005
1.05 o
7.70 o | Zr
96** 50** 50**
94** 06**
91,254
0,105.6
6,46.6 | Nb
50
50 50438
1.10 b
6.251 b | Mo
8071 947 951
8071 9877 9877
65 94
2-88-5
8-71 15 | (Tc) | Ru
set set sort sac
sont segt son
son sort
a 56 to
6.6 to | Ph
102
102 5065
144 8 b
4.6 b | Pd
102' 104' 305"
100' 100'
100.42
8.0 b
4.48 b | Ag
us/* tus*
us/ aeeo
us/a a
e who | Cd
*** (80 940 107
87 107 980 940
812.411
pizzi 6
8.54s | 113" 115"
114.418
110.510
2.62 b | Sn
127 HA UG F29
1477 HEP 137
1387 1377 1377
1168,72
0.46281 D
4.8002 D | Sb
121" 122"
121 78
4 91 6
3 80 9 | Te
concorror-or
127.0
4.7 ts
4.32 ts | 127
128 00447
8.15 b
3.81 b | Xe
104 CR CON CO
104 CR
104 CR | | CS
133
132 90140
2915 | Ba
100 100 100 100
100 100 100
100 100 100 | La
136 139 to
136 9065
8,07 to
9,66 to | Hf
176.136*172**
129** 129**
180**
176.40
100.10
10.20 | Ta
160 9497
30.6 b
601 b | W
180 182"
183" 184"
18384
18384
1838
4,00% | Re
1807 1807
180,207
80,7 to
11.5 to | Os
tox the ver-
tox tox
tox
tox
tox
tox
tox
tox
tox
tox
tox | Ir
10111 10011
100217
403 ti
14 ti | Pt
100 rgp* rse**
100**
100 total
10.0 total
10.7 to | Au
197
198 (1985)
19 (1985)
7 (1985) | Hg
106 100 100
209 204 209
200.00
272,345
26.8 5 | TI
2017 2067
204,3033
2,435
9,805 | Pb
284' 208"
207" 200"
0.171 b
11.12 b | 209
209
206-96038
0-0308 ti
0-150'8 | (Po) | (At) | (Rn) | | (Fr) | (Ra)
(ISM)
12.0 b
13 b | (Ac) | 104 | 105 | 106 | | | | | | | | | | | | | | | | Ce | Pr | 1 Nd | (Pm)/ | Sm | - | Cd | A Tb | Dv | Но | Er | Tm | Yb | Lu | | | | | | 136 136 140 ¹⁰
142 ¹
140,115
0,63 th
2,046 | 141
141 00705
11.5 p
2.00 h | SET HET THE THE THE THE THE THE THE THE T | 0.45 | 1000 | EU
1317 159
131 163
933 16 | Gd | 150
150
150,92504
22,4 b
8,84 b | 102 103 107 108
102 107 108
162.5
994.0
93.00 | 165
165
164.00000
84.70
8.40.0 | 162 164" 166"
167" 168"
170" 168"
170" 167.26
109% 8.7% | 180,00401
180,00401
1900
1838 b | 173.04
94.86
23.46 | 178° 176°
174,978
746
729 | | | | | | Th | (Pa) | DA1 204 | (Np) | (Pu) | (Am) | (Cm) | (Bk) | (Cf) | (Es) | (Fm) | (Md) | (No) | (Lr) | | | | | | 732.63105
7.37 6
73.36 b | 200.6 to
10.6 to | 258.0368
2.57 h
0.0 h | 175.90
1450 | 1017.3 b
7.7 b | | | | | | | | | | | | # ToF-ND - non-invasive! - phase analysis of composition - texture analysis - Elemental composition - max. Illuminated surface: 25x100 mm². min. sample volume: a few cm² - back scattering mode, ToF-ND resolution: - $\Delta d/d \sim 1 \times 10^{-3}$ at $\lambda = 0.1$ nm (200 Hz) In the case of inhomogeneous samples, the measured information is the average for the whole illuminated ## ToF-ND results Results Alloy composition? Bronze Age. the dating of the helmets **Elemental composition** The gained information in case of elemental composition is taken rom all illuminated volume. In this way we can provide average nformation about the elemental composition of the sample. A good correlation was observed with PGAA data in case of two major components (Cu, Sn). In the case of three major components (Cu, Sn, Pb) the Vegard's law is not applicable. n all measures samples the CuSn α-phase was observed due to small Sn concentration (below 13,7w%). If the sample have lead content we suppose that a part of the tin makes a different phase with lead which is not observable in our spectra due to the small quantity of PbSn phase. ## Texture Texture analysis of three different type of objects were done. The Paks cap (knob part) and Várvölgy bronze greave shown weak texture. More remarkable texture was observed in case of Kér-Szentgáloskér bronze cuirass. Interpretation of preferred orientation of crystallites) have to be supported by conventional metallography Diffraction spectra for one rotation setting measured on Kér-Szentgáloskér sample Diffraction pattern of measured sample Conical bell helmets Cap helmets **Cuirass fragments** **Applique** ### Bronze Age metal defensive armour Greave (leg protection) Curiass Helmet Shield Dating relative: Bz D Ha B3 Dating absolute: (approx. 1300 800/750 BC) | Späte Bronzezeit | | | | | | | | |---------------------|-------------------|--|--|--|--|--|--| | Ha B2/3 | 800–950 v. Chr. | | | | | | | | Ha B1 | 950-1050 v. Chr. | | | | | | | | Ha A2 | 1050-1100 v. Chr. | | | | | | | | Ha A1 | 1100-1200 v. Chr. | | | | | | | | Bz D | 1200-1300 v. Chr. | | | | | | | | Mittlere Bronzezeit | | | | | | | | | Bz C2 | 1300-1400 v. Chr. | | | | | | | | Bz C1 | 1400-1500 v. Chr. | | | | | | | | Bz B | 1500-1600 v. Chr. | | | | | | | | Frühe Bronzezeit | | | | | | | | | Bz A2 | 1600-2000 v. Chr. | | | | | | | | Bz A1 | 2000-2200 v. Chr. | | | | | | | # **PIXE** - Non-invasive! Analyses on corroded surfaces; or on the surface the corrosion is removed (invasive!). Elemental sensitivities: 5-100ppm range, depending on the - element Depth of analysis for 2.5 MeV proton in bronze (micrometer): | Fe | 8.6 | As | 7.5 | |----|------|----|------| | Co | 9.9 | Ag | 12.7 | | Ni | 10.6 | Sn | 12.9 | | Cu | 11.3 | Pb | 7.6 | | Zn | 11.9 | | | - On several elements such as Ni, Au, Pb and Bi XRS-PIXE methods have a better sensitivity than PGAA. - The analysis of Sn and Sb is more difficult, since the sensitivities of both PIXE and PGAA methods are poor, however the sensitivity of PIXE can be considerably improved by optimization of the experimental procedure. - 90% of the X-ray counts are coming from the layer of thickness listed above. Typical PIXE-spectrum setup - Results and challenges Corrosion on the surface: Unfortunately no analyses on the pure metal permitted; the penetration depth of 2.5 MeV protons is not large enough; no possibility to check the thickness of the corrosion layer non-invasive - On the surface with PIXE less Sn was detected than with the PGAA in the bulk; further studies are planned to find the reasons - The quantitative results were giving a good idea of the alloy composition, and in addition the minor and trace elements can also be analysed