NON-DESTRUCTIVE PROMPT GAMMA ACTIVATION ANALYSIS OF CHIPPED STONE RAW MATERIAL

<u>Zsolt Kasztovszky</u>¹ Katalin T. Biró², András Markó², Viola Dobosi²

ARCHAEOMETRY AT THE INSTITUTE OF ISOTOPES

- 1996 Prompt Gamma Activation Analysis (PGAA) at the Budapest Research Reactor
- **1998** Applications in Archaeometry (metals, stones, pottery, glass)
- **2000** Co-operation with the Hungarian National Museum (mostly stone tools)

- More than **150** objects from the Palaeolithic and Prehistoric collection of the HNM, mainly from the Central-European region
- Objects made of silex (flint, chert, radiolarite) or volcanite (porphyry, obsidian)
- Comparative geological material from 'Lithotheca' collection
- <u>AIM</u>: Classification of the objects; if possible provenance study
- With PGAA major- and trace components measurable

 $(SiO_2, Al_2O_3, TiO_2 Fe_2O_3, MnO, CaO, MgO, Na_2O, K_2O, B, Sc, V, Co, Cr, Sm, Eu, Gd, Dy)$

Macroscopically similar objects proved to be different !

THE PHYSICAL BASIS OF PGAA

MAIN FEATURES OF PGAA

- 1996-2000 2.5 ·10⁶ cm⁻²s⁻¹ thermal flux
- 2000- $5 \cdot 10^7 \text{ cm}^{-2}\text{s}^{-1}$ cold neutron beam
- 2008- 1 $\cdot 10^8$ cm⁻²s⁻¹ cold neutron beam
- 'Multielement' (main- and trace components)
- Minimal sample preparation
- **Non-destructive** (no residual radioactivity, no mechanical damage)
- Bulk composition independent of chemical and physical form of the sample

MAIN STEPS OF THE ANALYSIS

Spectrur C\HYPC\SPECT RAVARCHEO\ZOLDPALA/FV41103C.MCA Live Tim 3290.48

											c%	c%	c%	c%	
z	EI	M	m	un c%	m(bkg)	un c%	m (n et)	n(ox)	m(ox)	un c%	atom	el/el	el/ox	ox/ox	un c%
1	н	1.00794	0.0729	1.2	0.00018	3.0	0.07272	0.5	0.6499	1.2	0.027	0.904	0.484	4.328	1.2
5	в	10.811	6.7E-05	1.1	1E-08	0.0	6.7E-05	1.5	0.00022	1.2	3E-04	8E-04	4E-04	0.001	1.2
11	Na	22.9898	0.39095	2.5	0	0.0	0.39095	0.5	0.52699	2.5	3.36	4.859	2.604	3.51	2.5
12	Mg	24.305	0.93332	3.6	0	0.0	0.93332	1	1.5477	3.6	8.48	11.6	6.216	10.31	3.6
13	AI	26.9815	1.21162	1.6	0.00273	5.0	1.20889	1.5	2.28416	1.6	12.19	15.03	8.051	15.21	1.6
14	Si	28.0855	3.09038	1.5	0	0.0	3.09038	2	6.61136	1.5	32.45	38.41	20.58	44.03	1.5
16	S	32.066	0.03361	5.8	0	0.0	0.03361	3	0.08391	5.8	0.403	0.418	0.224	0.559	5.8
17	CI	35.4627	0.0015	7.0	1.8E-05	20.0	0.00149	0	0.00149	7.1	0.02	0.018	0.01	0.01	7.1
19	к	39.0983	0.04832	12.4	0	0.0	0.04832	0.5	0.05821	12.4	0.706	0.601	0.322	0.388	12.4
20	Ca	40.078	0.75737	2.0	0	0.0	0.75737	1	1.05972	2.0	11.35	9,414	5.044	7.058	2.0
21	Sc	44.9559	0.00063	14.5	0	0.0	0.00063	1.5	0.00097	14.5	0.011	0.008	0.004	0.006	14.5
22	Ti	47.867	0.1515	1.0	0	0.0	0.1515	2	0.25277	1.0	2.711	1.883	1.009	1.683	1.0
23	V	50.9415	0.00471	6.8	0	0.0	0.00471	2.5	0.00841	6.8	0.09	0.059	0.031	0.056	6.8
24	Cr	51.9961	0.00984	7.9	0	0.0	0.00984	1.5	0.01438	7.9	0.191	0.122	0.066	0.096	7.9
25	Mn	54.938	0.01509	2.4	0	0.0	0.01509	1	0.01948	2.4	0.31	0.188	0.101	0.13	2.4
26	Fe	55.845	1.3222	1.2	0.00144	5.0	1.32076	1.5	1.88835	1.2	27.57	16.42	8,796	12.58	1.2
27	Co	58.9332	0.00531	4.0	0	0.0	0.00531	1	0.00676	4.0	0.117	0.066	0.035	0.045	4.0
62	Sm	150.36	5.4E-05	2.1	0	0.0	5.4E-05	1.5	6.3E-05	2.1	0.003	7E-04	4E-04	4E-04	2.1
64	Gd	157.25	7.6E-05	2.0	0	0.0	7.6E-05	1.5	8.7E-05	2.0	0.004	9E-04	5E-04	6E-04	2.0
66	Dv	162.5	0.00014	18.3	0	0.0	0.00014	1.5	0.00017	18.3	0.009	0.002	1E-03	0.001	18.3
							8.04523		15.0151	0.806	100	100	53,58	100	
						- 0 cal	culated		6.96985	46.42	%				
						mass	NO O		8.04523						

THE PGAA SYSTEM

PGAA SPECTRUM OF A GREY FLINT SAMPLE

APPROXIMATE DETECTION LIMITS FOR BUDAPEST PGAA SYSTEM WITH COLD NEUTRON SOURCE

H 1.00794 0.3326 82.02 b				Eler stable	nent isotope		Detecti 0.0 1-1 10	ion Lim 1-1 0	it þpm]								He 3 ^{0.00014} 4 4.002602 0.007 b 1.34 b
Li 6 ^{7.5} 7^{92.5} 6.941 70.5 b 1.37 b	9.0122 0.0076 b 7.63 b			atomic σ - ca σ - sca	weight apture attering		■ 100 ■ >100 ■ >100 □ no	0-1000 000 data			(B 10 ²⁰ 11 ⁸⁰ 10.811 767 b	C 12 ⁹⁹ 13 ^{1.1} 12.011 0.00350 b 5.551 b	N 14 15 ^{.37} 14.00674 1.9 b 11.51 b	O 16 17 ^{0.038} 18 ^{0.2} 15.9994 0.00019 b 4.232 b	F 19 18.998 0.0096 b 4.018 b	Ne 20 ⁹¹ 21 ^{0.28} 22 ⁹ 20.1797 0.039 b 2.628 b
Na 23 22.98977 0.530 b 3.28 b	Mg 24 ⁷⁹ 25 ¹⁰ 26 ¹¹ 24.305 0,063 b 3.71 b											AI 27 26.9815 0.2311 1.503 b	Si 28 ⁹² 29 ^{4.7} 30 ^{3.1} 28.0855 0 171 b 2.167 b	P 31 30.9738 0.172 b 3.312 b	S 32 ⁹⁵ 33 34 ⁴ 36 32.066 0.53 b 1.026 b	CI 35 ⁷⁶ 37 ²⁴ 35.4527 3.5 b 16.8 b	Ar 36 38 40 ^{99.6} 39.948 0.675 b 0.683 b
K 39 ⁹⁹ 4041 ⁷ 39.0983 9.1 b 1.96 b	Ca 40 ⁹⁷ 42 43 44 ² 46 48 40.078 27.5 b 23.5 b	Sc 45 44.9559 7.5 b 23.5 b	Ti 46 ⁸ 47 ⁷ 48 ⁷⁴ 49 ⁵ 50 ⁵ 47.867 6.00- 4.35 b	V 50 ⁰²⁵ 51 50.9415 5.081 5.10 b	Cr 50 ⁴ 52 ⁸⁴ 53 ¹⁰ 54 ² 1.996 3.05 b 3.49 b	Mn 55 54.9380 4.3.b 2.15b	Fe 54 ⁶ 56 ⁹² 57 ² 58 55.845 9.56 b 11.62 b	Co 59 58.9332 97.181 5.6 b	Ni 58 ⁶⁸ 60 ²⁶ 61 ^{1.1} 62 ^{3.6} 64 ^{0.9} 58.6934 4.49 b 18.5 b	Cu 63 ⁶⁹ 65 ³¹ 63.546 3.78 b 8.03 b	Zn 64 ⁴⁹ 66 ²⁸ 67 ⁴ 68 ¹⁹ 70 65.39 2.75 b 6.38 b	Ga 69 ⁶⁰ 71 ⁴⁰ 69.723 2.75 b 6.83 b	Ge 70 ²⁰ 72 ²⁷ 73 ⁸ 74 ³⁷ 76 ⁸ 72.61 2.20 b 8.60 b	As 75 74.9216 4.5 b 5.50 b	Se 74 76 ⁹ 77 ⁸ 78 ²⁴ 80 ⁵⁰ 82 ⁹ 78.96 11.7 b 8.30 b	Br 79 ⁵¹ 81 ⁴⁹ 79.904 6.9 b 5.90 b	Kr 78 80 ² 82 ¹² 83 ¹² 84 ⁵⁴ 86 ¹⁷ 83.8 25 b 7.68 b
Rb 85 ⁷² 87 ²⁸ 85.4678 0.38 b 6.8 b	Sr 84 86 ¹⁰ 87 ⁷ 88 ⁸³ 87.62 1.28 b 6.25 b	¥ 89 88.90585 1.28 b 7.70 b	Zr 90 ⁵² 91 ¹¹ 92 ¹⁷ 94 ¹⁷ 96 ³ 91.224 0.185 b 6.46 b	Nb 93 92.90638 1.15 b 6.255 b	Mo 92 ¹⁵ 94 ⁹ 95 ¹⁶ 97 ¹⁰ 98 ²⁴ 99 ¹⁰ 95.94 2.48 b 5.71 b	(Tc) (98) 20 b 6.3 b	Ru 96 ⁶ 98 ² 99 ¹³ 100 101 ¹⁷ 102 ³² 104 101.07 2.56 b 6.6 b	Rh 103 102.9055 144.8 b 4.6 b	Pd 102 ¹ 104 ¹¹ 105 ²² 106 ²⁷ 108 ²⁷ 110 ¹² 106.42 6.8 b 4.48 b	Ag 107 ⁵² 109 ⁴⁸ 107.8682 63.3 b 4.99 b	Cd 106 108110 111 112 113114 116 112.411 2520 b 6.5 b	In 113 ⁴ 115 ⁹⁶ 114.818 193.8 b 2.62 b	Sn 112114 115 116 117118'119 120'122 124 118.71 0.626 b 4.892 b	Sb 121 ⁵⁷ 123 ⁴³ 121.76 4.91 b 3.90 b	Te 120122123124 125126128130 127.6 4.7 b 4.32 b	127 126.90447 6.15 b 3.81 b	Xe 124 126 12829 130 131 132 134 136 131.29 23.9 b
CS 133 132.90545 29.0 b 3.90 b	Ba 130 132 13#35 136137*138 137.327 1.1 b 3.38 b	La 138 139 ^{99.9} 138.9055 8.97 b 9.66 b	Hf 174 176 ⁵ 177 ¹⁹ 178 ²⁷ 179 ¹⁴ 180 ³⁵ 178.49 104.1 b 10.2 b	Ta 180 181 ^{99.99} 180.9497 20.6 b 6.01 b	W 180 182 ²⁶ 183 ¹⁴ 184 ³¹ 186 ²⁹ 183.84 18.3 b 4.60 b	Re 185 ³⁷ 187 ⁶³ 186.207 89.7 b 11.5 b	OS 184 186187 188°199°190° 192″ 190.23 16.0 b 14.7 b	I 7 191 ³⁷ 193 ⁶³ 192.217 425 b 14 b	Pt 190 192 ¹ 194 ³³ 195 ³⁴ 196 ²⁵ 198 ⁷ 195.08 10.3 b 11.71 b	Au 197 196.96655 98.65 b 7.73 b	Hg 196 198199 ⁷ 200 ⁷ 201 ² 202 ⁹ 204 200.59 372.3 b 26.8 b	TI 203 ³⁰ 205 ⁷⁰ 204.3833 3.43 b 9.89 b	Pb 204 ¹ 206 ²⁴ 207 ²² 208 ⁵² 207.2 0.171 b 11.12 b	Bi 209 208.98038 0.0338 b 9.156 b	(Po) (209)	(At) (210)	(Rn) (222) -
(Fr) (223) -	(Ra) (226) 12.8 b 13 b	(Ac) (227)	104	105	106												

Ce 136 138 140 ⁸⁵ 142 ¹¹ 140.115 0.63 b 2.94b	Pr 141 140.90765 11.5 b 2.66 b	Nd 142 143144145 146 148150 144.24 51 b 0.6b	(Pm) (145) 168.4 b 21.3 b	Sm 144 147 148 149 150 152 154 150.36 922 b	Eu 151 ⁴⁸ 153 ⁵² 151.965 450 b 9.2 b	GO 52 15455 156 157 158 160 157.25 1700 b 160	Tb 159 158.92534 23.4 b 6.84 b	Dy 156 158 16061 ⁹ 162 ⁶ 163 ⁶ 164 ⁸ 162.5 994 b 90.3 b	Ho 165 164.93032 64.7 b 8.42 b	Er 162 164 ² 166 ³³ 167 ²³ 168 ²⁷ 170 ¹⁵ 167.26 159 b 8.7 b	Tm 169 168.93421 100 b 6.38 b	Yb 168 170711172 173°1 74 176 173.04 34.8 b 23.4 b	Lu 175 ⁹⁷ 176 ³ 174.976 74 b 7.2 b
Th 232 232.03805 7.37 b 13.36 b	(Pa) (231) 200.6 b 10.5 b	U 235 ^{0.72} 238 ^{99.3} 238.0289 7.57 b 8.9 b	(Np) (239) 175.9 b 14.5 b	(Pu) (244) 1017.3 b 7.7 b	(Am) (243)	(Cm) (247)	(Bk) (247)	(Cf) (251)	(Es) (252)	(Fm) (257)	(Md) (258)	(No) (259)	(Lr) (261)

FLINT (Shallow water sedimentary siliceous rock)

- AIM: Provenance study of 24 chipped stone objects from Upper Palaeolithic sites of Esztergom, Nadap and Bodrogkeresztúr
- **COMPARATIVE MATERIAL**: HNM Lithotheca (outcrops of Hungary, Bohemia, Poland, Romania and Ukraine)
- COMPOSITION: >95% SiO₂; Al₂O₃, TiO₂, Fe₂O₃, CaO, Na₂O, K₂O, MgO, MnO, H₂O, Cl, B, Sm, Eu, Gd, Sc, Cd

MARSO WIER KRZE SWIEC SASP BEBLO MAKOW MARSO VOLH	×			=1 F	-8
	ТҮРЕ	SAMPLE	Inv. Nr.		CODE NEV
		BODROGKERESZTÚR 1	PB 83/643 (1) 17	Volhynian/Prut Flint	FA01
BODR		BODROGKERESZTÚR 2	PB 83/643 (2) 18	Volhynian/Prut Flint	FA02
		ESZTERGOM 1	PB 88/234 (1) 14	Prut Flint	FA03
		ESZTERGOM 2	PB 88/234 (2) 15	Prut Flint Prut Flint	FA04 FA05
ESZT		NADAP 1	PB 86/47 (1) 11	Erratic Flint	FA06
		NADAP 2	PB 86/47 (2) 12	Erratic Flint	FA07
		NADAP 3	PB 86/47 (3) 13	Erratic Flint	FA08
		JÁSZLADÁNY 17.	Ö 35/1939.46	grey flint	FA09
		KUNSZENTMÁRTON	Ö 25/1928.29	grey flint	FA10
	I N	TISZAPOLGÁR	Ö 53.35.170	grey flint	FA11
		KALLO 1	O 59.10.8	grey flint	FA12
		KALLU 2 DESKŐ RADLANC 4	D 59.10.12	grey flint	FA13
	A R	PESKU BARLANG 1 DESKŐ RADLANG 2	PB 915	grey flint	FA14 FA15
		PESKŐ BARLANG 2 PESKŐ BARLANG 3	PB 55/12	arev flint	FA16
		KUP-EGYES	-	grey flint	FA17
		MIKOLA 2	-	flint	FA18
		ZEIT 1	-	Silex	FA19
		BOINESTI 1	BM 4829	silex	FRA01
		BUSAG 2	BM 33632	silex	FRA02
NOT AND CONTROLS AND		CALINESTI II/2	011 40004	flint	FRA03
		CALINESTI DSM 5	SIM 42664	SIIEX "obeidian"	FRA04
		SASPÓW		Jurassic Kraków Elint	EG01
		SWIECIECHÓW		Swieciechów Flint	FG02
		NAGYTEVEL		Tevel Flint	FG03
		MAKÓW	L89/107	Erratic (Baltic) Flint	FG04
		PRUT	L86/248	Prut Flint	FG05
		VOLHYNIA		Volhynian Flint	FG06
		WIERZBYCZA		Chocolate Flint	FG07
		BEBLO		Jurassic Kraków Flint	FG08
	F				EG10
	L			arev flint	FG11
		KANIV-AMAZONKA 2		grey flint	FG12
	N	BUGOYOVO-BUCHAK I/1		grey flint	FG13
		BUGOYOVO-BUCHAK I/2		grey flint	FG14
	G	BUGOYOVO-BUCHAK I/3		grey flint	FG15
F2	F	BUGOYOVO-BUCHAK I/4		grey flint	FG16
	ō	BUGOYOVO-BUCHAK II/1		grey flint	FG17
		BUGOYOVO-BUCHAK II/2		grey flint	FG18
				grey fint	EG20
		BELAEVKA-ZELEZNY HUTOR 1		grey flint	FG21
		BELAEVKA-ZELEZNY HUTOR 2		arev flint	FG22
		BELAEVKA-ZELEZNY HUTOR 3		grey flint	FG23
		TORUN 1	L 86/218	grey flint	FG24
		TORUN 2	L 86/218B	grey flint	FG25
		OVIDIOPOL		grey flint	FG26

RESULTS

- The archaeological samples have very similar composition
- They are different from most of the geological references
- Most similar to the raw material from Prut and Volhynia
- More samples must be measured

'SZELETIAN' FELSITIC PORPHYRY, HORNSTONE, RADIOLARITE

- SFP classical Palaeolithic raw material in Hungary (Szeleta-cave, Bükk mts.) Previously identified as flint...
- Also in Danube-Bend, Börzsöny, Cserhát, Zemplén mts.
- COMPARATIVE: Hornstone and Radiolarite (Buda hills, Trans-Danubian mts. SiO₂ > 90%)

TYPE	SAMPLE	Inv. Nr.		CODE NE
Р	BECSKE	-	Seletian Felsitic porhyry	PA01
0	ERDŐKÜRT	-	Seletian Felsitic porhyry	PA02
R	PILISMARÓT-DIÓS	PB 81/60	Seletian Felsitic porhyry	PA03
Р	JÁSZFELSŐSZENTGYÖRGY	PB 93/152	Seletian Felsitic porhyry	PA04
H	DEBERCSÉNY	PB 87/167	Seletian Felsitic porhyry	PA05
	CSOBÁNKA	PB 409	Seletian Felsitic porhyry	PA06
Α	BAJÓT	PB 557	Seletian Felsitic porhyry	PA07
R	LEGÉND-ROVNYA	-	Seletian Felsitic porhyry	PA08
C	VANYARC-TOVI	-	Seletian Felsitic porhyry	PA09
Ĥ	VANYARC-DOLINA	-	Seletian Felsitic porhyry	PA10
	ZSÁMBOK	-	Seletian Felsitic porhyry	PA11
	ACSA	PB 2001/22	Seletian Felsitic porhyry	PA12
	SZOB	PB 21/1935	Seletian Felsitic porhyry	PA13
	HONT	PB 99/301	Seletian Felsitic porhyry	PA14
	VERŐCE	PB 86/383	Seletian Felsitic porhyry	PA15
	GALGAGYÖRK	PB 2001/581	Seletian Felsitic porhyry	PA16
	SZELETA 1	PB 661	Seletian Felsitic porhyry	PA17
	SZELETA 2	PB 665	Seletian Felsitic porhyry	PA18
	SÁROSPATAK	PB 71/2	Seletian Felsitic porhyry	PA19
	ASZÓD	PB 76/1	Seletian Felsitic porhyry	PA20
	PUSKAPOROS	PB 789	Seletian Felsitic porhyry	PA21
	VANYARC 11	—	Seletian Felsitic porhyry	PA22
	KEHNEC 1	464 (124/55)	Seletian Felsitic porhyry	PA23
	CECEJOVCE	CE 24	Seletian Felsitic porhyry	PA24
	NIZNY HRABOVEC	NH I+II	Seletian Felsitic porhyry	PA25
	KOROL 2A	-	Glassy Porhyry ?	PA26
	KOROL 3	KOR 75.6.3	Glassy Porhyry ?	PA27
	BÜKKSZENTLÁSZLÓ	L 86/024	Seletian Felsitic porhyry	PG01
	ALBERTFALVA	—	hornstone	HA01
	CSEPEL	—	hornstone	HA02
ΗG	ÖRDÖG-OROM	L 86/019	hornstone	HG01
OE	IRHÁS-ÁROK	L 86/021	hornstone	HG02
RO	CSŐVÁR	L 86/025	hornstone	HG03
N	DENEVÉR U	L 87/101	hornstone	HG04
	ТАТА	PB 2001/140	radiolarite	RA01
RADIO ARCH	SÁGVÁR 1	PB 61/1950.29	radiolarite	RA02
	REMETEA SOMOS I/2	BM 1885	radiolarite	RA03
RADIO GEO	LÁBATLAN	L 86/103	radiolarite	RG01
L	GALGAGYÖRK-CSONKÁS	-	limnic quartzite	LQA01
Q	MIKOLA 3		limnic quartzite	LQA02
	BOINESTI 2	BM 5147	limnic quartzite	LQRA01
A	BOINESTI 3	BM 4531	limnic quartzite	LQRA02
R	CALINESTI II/2	SM 44906	limnic quartzite	LQRA03
С	CALINESTI HURCA 1	SM 40939	limnic quartzite	LQRA04
Н	CALINESTI DSM 10	SM 41617	limnic quartzite	LQRA05
	BUSAG 3	BM 33634	jasper	JRA01
	CALINESTI DSM 4	SM 42773	jasper	JRA02
JASPER ARC	CALINESTI DSM 8	SM 41603	jasper	JRA03
	REMETEA SOMOS I/1	BM 5173	jasper	JRA04
	REMETEA SOMOS I/3	SM 1191	jasper	JRA05

- RESULTS
- Siliceous Radiolarite and Hornstone SiO₂ > 90%) can be distinguished from Szeletian Porphyry (70-80% SiO₂)
- Archaeological pieces from Cserhát mts. lies >100 km from the geological source

OBSIDIAN

Volcanic glass, ~75% SiO₂, classical subject of archaeometry studies

We have investigated

43 Archaeological pieces
18 Comparative geological material (Central Europe / Carpathian I,II; Mediterranian)
3 Modern slag

12 Other obsidian-like samples

C2Tr				C	1	C2E	C	2T		
				Obse	rvations	on axes 1 and	1 2 (84%)			
C1	2 1.5 1 0.5 1 0.5 1 -0.5 -1 -1.5 -2 -3	OA24 OA24	OA18 0 A16 0007 OA27 0 OHA06 A OHA01	G16 0A07 0 0017 0 0A07 0 0017 0 0C10 0 0002 0 0A02 0A10 0A11 0 0A1 0 0A02 0A10 0 0A03 0 0A03 0 0A03 0 0A03 0 0C09 -1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OG14 DA23 OA15 121 OA OHAB8 OA 03 OA04 OA06 axis 1 (72%) ->	0A14 0A28 0HA 0A17 0A28 0HA 0G13 0A20 0HA 0G13 0A20 0HA 0G13 0A20 0HA 0G13 0A20 0HA 0G1 0HA 0G1 0HA 0HA 0HA 0HA 0HA 0HA 0HA 0HA 0HA 0HA	0G12 0G04 4 0 0G1 0G1 0G1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	arpathian omanian eo
TYPE	SAMDIE		- 1192	Inv. Nr.	2110					E 2
TIPE		-				Slag 2			SA04	1
				_		Slag !			SA02	
Contraction of the						Slag 2			SA03	- 1
0						Slag ?			SA04	
Т	KOROL 4			KOR 75 429	86	Andesite			SA05	1900 C
н	RORUL 1	4		ROK 79.420	.0	Andesite			SPA03	-
E	BUINEST	4		SW 4327		Andesite			SRAUT SPA02	CT CT
R	CALINECT			SM 44300		Menilito			SPA02	10
	CALINEST	THURCA 2		SWI 40342	Contraction of the local division of the loc	Monilite 2	-	-	SRAU3	7
	CALINEST			SIVI 4230/ SM /1791		Menilite ?			SPA04	
	CALINEST			SIVI 41/01		wennie ?	100	1 1 1 1	SKAUS	

/PE	SAMPLE	Inv. Nr.		CODE
	MEGYASZÓ 1	94/737	mahaqonian	OA01
	MEGYASZÓ 2	94/437	mahagonian	OA02
	MEGYASZÓ 3	95/373	mahaqonian	OA03
	MEGYASZÓ 4	95/264	mahaqonian	OA04
	MEGYASZÓ 5	95/263	mahagonian	OA05
	ABOVIAN	87/064	mahagonian	OA06
	BOGAZKÖY	88/040	mahagonian	OA07
	ARKA	PB 63/949	Carpathian 2Tr	OA08
	KÁLLÓ - PUSZTA	-	Carpathian 2Tr	OA09
	LEGÉND 1	-	Carpathian 1	OA10
	LEGÉND 2	-	Carpathian 2T	OA11
	LEGÉND 3	-	Carpathian 2E	OA12
	LEGÉND 4	-	mahagonian	OA13
	DÖMÖS	PB 73/111	Carpathian 1	OA14
	PILISMARÓT	PB 91/129	Carpathian 1	OA15
	HONT	PB 99/234	Carpathian 2E ?	OA16
~	BALATONSZEMES	PB 17/21	Carpathian 1	OA17
0	GALGAGYÖRK	-	Carpathian 2T	OA18
В	PÜSPÖKHATVAN	-	Carpathian 2T ?	OA19
S	MOGYORÓSBÁNYA	PB 2000/735	Carpathian 1	OA20
	SÁGVÁR 2	PB 51/159.12	Carpathian 1	OA22
•	PILISSZÁNTÓ	PB 51/110	Carpathian 1	OA23
A	HIDASNÉMETI	-	Carpathian 1	OA24
R	ÉRD	1960/40.4	Carpathian 2E ?	OA25
С	MIKOLA 1		Carpathian 1	OA26
н	NAGYKÁLLÓ	1961.3.204	Carpathian 1	OA27
	SZIGETCSÉP	PB 1977/7.408	Carpathian 2T	OA28
	TAHITÓTFALU	1965/15.8	Carpathian 1	OA29
	TASNAD-SERE 1	SM 44911		ORA01
	URZICENI 1	SM 44913		ORA02
	BUSAG 1	BM 33633		ORA04
	CALINESTI I/1	SM 32347		ORA05
	CALINESTI DSM 1	SM 43001		ORA06
	VELA SPILA			OHA01
	CEPIN			OHA02
	DANILO	4116		OHA03
	KOLOJVAR	7634		OHA04
	DEVRSKE			OHA05
	SMILCIC	2856		OHA06
	CREVNI OTOK			OHA07
	OSTROVICA	957		OHA08
	SUSAC BLACK			OHA09
	SUSAC RED			OHA10
	BODROGOLASZI	-		OG01
	TOLCSVA 1	PB 88/027		OG02
	TOLCSVA 2	L86/170		0603
	CEJKOV	L 86/186		OG04
	VINICKY 1	L 86/191		OG05
0	VINICKY 2	L 86/152		OG06
в	MAD	L 86/124		0607
S	LIPARI1	L 86/240		0008
	LIPARI2	L 89/152		0609
G	SARDINIA 1	L 86/244		0610
E	MELOS 1	L 8//51		0611
0	MELOS 2	L 89/151		0612
-	KASOV	L 86/188		0613
	MARCI	L 66/244		0014
		L 69/150		0615
	SEVAN 1	L 00/200		0010
	SEVAN 2	L 09/103		0017
	KUKUSZUVI	L 92/129		0010

SAMPLES DIFFERENT FROM OBSIDIAN:

- Oláhlápos, Zeitlarn, Kup (artificial? Slag)
- Mikola (flint, limnic quarzite)
- Ságvár (radiolarite thought to be obsidian)
- Korolevo (andesite)

RESULTS I.

- Carpathian obsidians are different from others (Melos, Lipari, Sevan, Rokosovi, Auvergne)
- C I. (SL) and C II. (HU) form two subgroups
- Further subgroups (C2T, C2E, C2Tr) with PGAA?

CONCLUSION

With **PGAA** we can differentiate between various chipped stone raw materials (Silex, Porphyry, Obsidian, etc.) with **non-destructive** way! Further subgroups might be determined

REFERENCES

- Zs. Kasztovszky, K. T. Biró, A. Markó, V. Dobosi: Cold neutron prompt gamma activation analysis a non-destructive method for characterisation of high silica content chipped stone tools and raw materials, *Archaeometry*, 2008, 50, 1, 12-29.
- Kasztovszky, Zs., Biró, K. T., Markó, A., Dobosi, V., Prompt Gamma Activation Analysis for non-destructive characterisation of chipped stone tools and raw materials (poszter), 12th International Conference on Modern Trends in Activation Analysis, 2007, Sept. 16-21, Tokyo, Japan.
- K. T. Biró, Zs. Kasztovszky: Further studies on grey flint samples (poster), 36th International Symposium on Archaeometry, 2-6 May, 2006, Quebec City, Canada
- C. T. Astalos, Zs. Kasztovszky: Prompt gamma activation analysis of some prehistoric stone tools from North-Western Romania (poster), 36th International Symposium on Archaeometry, 2-6 May, 2006, Quebec City, Canada
- Biró, T. K., Markó, A., Kasztovszky, Zs., 'Red' obsidian in the Hungarian Palaeolithic transition in Central and Eastern Europe, *Praehistoria*, 2005, 6, pp. 91-101

REFERENCES

- Zs. Kasztovszky, K.T. Biró: Fingerprinting carpathian obsidians by PGAA: first results on geological and archaeological specimens, Proceedings of 34th International Symposium on Archaeometry, Zaragoza, 2004. E-book: <u>http://www.dpz.es/ifc/libros/ebook2621.pdf</u>, Institución "Fernando el Católico" (C.S.I.C.) Excma. Diputación de Zaragoza, 2006, pp. 301-308.
- A. Markó, K. T. Biró, Zs. Kasztovszky: Szeletian felsitic porphyry: non-destructive analysis of a classical Paleolithic raw material, *Acta Archaeologica Academiae Scientiarum Hung.* 54 (2003) 297-314.
- Zs. Kasztovszky, K. T. Biró and V. Dobosi, Investigation of Grey Flint Samples with Prompt Gamma Activation Analysis, *Proceedings of the 33rd Int. Symposium on Archaeometry, 22-26 April 2002 Amsterdam (Eds. H. Kars and E. Burke), Geoarcheological and Bioarchaeological Studies*, Vol. 3, 2005, pp. 79-82

DETERMINATION OF CHEMICAL COMPOSITION

$$A_{E} = m \cdot S \cdot t$$
$$S = \frac{N_{A}}{M} \cdot \theta \cdot \sigma_{0} \cdot I_{\gamma} \cdot \Phi_{0} \cdot \varepsilon(E_{\gamma})$$

 $\begin{array}{l} \mathsf{m}:\mathsf{Mass of the element}\\ & \mathsf{S}:\mathsf{Sensitivity}\\ & \mathsf{A}_\mathsf{E}:\mathsf{Peak area}\\ & \mathsf{N}_\mathsf{A}:\mathsf{Avogadro-number}\\ & \mathsf{M}:\mathsf{Avogadro-number}\\ & \mathsf{M}:\mathsf{Molar weight}\\ & \theta:\mathsf{Isotopic abundance}\\ & \sigma_0:\mathsf{Isotopic abundance}\\ & \sigma_0:\mathsf{Neutron capture cross-section}\\ & \mathsf{I}_\gamma:\mathsf{Gamma-yield}\\ & \Phi_0:\mathsf{Neutron flux}\\ & \epsilon(\mathsf{E}_\gamma):\mathsf{Detector efficiency}\\ \end{array}$

Introducing the flux-independent

$$k_{0,C}(X) = \frac{(\theta \cdot \sigma_0 \cdot I_{\gamma} / M)_X}{(\theta \cdot \sigma_0 \cdot I_{\gamma} / M)_C}$$

$$\frac{m_X}{m_Y} = \frac{A_X}{A_Y} \cdot \frac{S_{\gamma,Y}}{S_{\gamma,X}} = \frac{A_X}{A_Y} \cdot \frac{k_{0,C}(Y)}{k_{0,C}(X)} \cdot \frac{\varepsilon_{\gamma,Y}}{\varepsilon_{\gamma,X}}$$

will give the mass fraction of arbitrary elements